

Aldehydes and Ketones Form Intermediate π Complexes with the Gilman Reagent, Me₂CuLi, at Low Temperatures in Tetrahydrofuran

Steven H. Bertz,* Richard A. Hardin, and Craig A. Ogle*

Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States

Supporting Information

ABSTRACT: Typical aldehydes and ketones form π complexes with Me₂CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.

While synthetic applications of organocopper reagents involving nonconjugated aldehydes and ketones are relatively rare,¹ they have been rising in importance with the development of copper-mediated asymmetric induction.² For example, Harutyunyan and co-workers recently reported high yields and enantiomeric excesses for copper-catalyzed additions to alkyl aryl ketones,³ and they invoked intermediate carbonyl π complexes, which had not been observed experimentally.⁴ On the basis of theoretical calculations, Nakamura and co-workers predicted such intermediates, for example, in reactions of organocuprates with acid chlorides.^{5,6} We have now used the rapid injection method to screen a number of typical aldehydes and ketones and have discovered a diverse group of cuprate– carbonyl π complexes (Chart 1).

In the rapid injection experiment, a solution of substrate is injected pneumatically using dry nitrogen into a solution of reagent with sufficient force to mix them in a fraction of a second as they spin at a controlled temperature in the probe of an NMR spectrometer.⁷ Tetrahydrofuran (THF) was chosen as the solvent because it breaks down aggregates, allowing us to focus on the primary structures.⁸

For example, injection of benzaldehyde (60 μ L, 0.5 M in THF- d_8) into a solution of Me₂CuLi-LiI (30 μ mol) in 7:1 THF- d_8 /benzene- d_6 (420 μ L) at -100 °C gave the very weak complex 1. It was recognized thanks to a small, broad ¹H NMR peak for its formyl hydrogen centered at ca. 5.40 ppm, accompanied by significant broadening of the cuprate methyl peak [width at half-height ($W_{1/2}$) = 2 Hz before and 20 Hz after injection].

When the probe was warmed to $-70 \,^{\circ}$ C, the ¹H NMR peak for Me₂CuLi disappeared ($t_{1/2} = 4 \,\text{min}$) with the simultaneous appearance of a cluster of peaks [ca. 1.30 ppm, MeC(OLi)] for aggregates of the 1,2-adduct;⁹ hydrolysis gave a single product, 1-phenylethanol (identical to an authentic sample as determined by GC-MS).¹⁰

Injection of *o-*, *m-*, or *p*-cyanobenzaldehyde at -100 °C gave the stable complexes 2–4, respectively. The conversion was ca. 100% for 2 and 3 but only 60% for 4. The ¹H NMR shifts for the formyl hydrogens in these complexes (5.64, 5.30, and 5.33)

"Also shown are selected ¹H (red) and ¹³C (blue) NMR chemical shifts in ppm relative to tetramethylsilane (TMS) [benzene secondary standard, ¹H/¹³C (ppm): 7.34/128.59]. Some peaks were not detected (n/d). See the text for the chemical shifts of **5b**, **5c**, and **6b**.

ppm, respectively) bracket the formyl shift for 1 (5.40 ppm), which supports our structure assignment. A complete summary of the ¹H and ¹³C shifts for 2 is given in Scheme 1, and the ¹H NMR spectrum of the reaction mixture containing 2 is shown in Figure 1.¹¹

The heteronuclear multiple-bond correlation (HMBC)¹² plot for **2** (Figure 2 left) has cross-peaks between the formyl hydrogen (5.64 ppm) and a number of carbon atoms: methyl C (-10.60 ppm, Me_{α}), carbonyl C (85.88 ppm), aryl C2 (104.93 ppm), aryl C6 (121.38 ppm), and aryl C1 (151.21 ppm). The heteronuclear multiple-quantum coherence (HMQC)¹² plot for **2** (Figure 2 right) has cross-peaks between the methyl hydrogens and the methyl carbon for both the upfield [¹H/¹³C (ppm): -1.03/-10.60, Me_{α}] and downfield [¹H/¹³C (ppm): -0.57/-2.33, Me_{β}] methyl groups. There is also a cross-peak between the formyl hydrogen and the adjacent carbonyl carbon [¹H/¹³C (ppm): 5.64/85.88, HC(O)]. The rotating-frame

 Received:
 April 24, 2013

 Published:
 June 18, 2013

Chart 1. Structures of Me₂CuLi–Carbonyl π Complexes^{*a*}

Scheme 1. Reaction of *o*-Cyanobenzaldehyde (SM) To Give 2^a

"Also shown are $^1\mathrm{H}$ (red) and $^{13}\mathrm{C}$ (blue) NMR chemical shifts in ppm relative to TMS.

Figure 1. ¹H NMR plot for the reaction solution containing 2 (M = methane, E = ethane).

Figure 2. (left) HMBC and (right) HMQC plots for complex 2.

nuclear Overhauser effect spectroscopy (ROESY)¹² plot (see the Supporting Information) indicated that there was exchange between **2** and the free substrate. The position of Me_{β} cis to the carbonyl carbon (and thus Me_{α} trans to it) was confirmed by the presence of a nuclear Overhauser effect (NOE) cross-peak between the formyl hydrogen and the hydrogens of Me_{β} without such a cross-peak for Me_{α} . The cuprate–carbonyl π complexes appear to have a pseudo-square-planar geometry, similar to the π complexes of C–C double bonds with cuprates.¹³

When the probe was warmed to -60 °C, the ¹H NMR peaks for 2 disappeared ($t_{1/2} = 40$ min) as a cluster of peaks [ca. 1.40 ppm, MeC(OLi)] appeared for aggregates of the 1,2-adduct. Hydrolysis gave a single product, 2-(1-hydroxyethyl)benzonitrile, as confirmed by GC-MS.

Injection of phthalaldehyde at -100 °C resulted in rapid conversion to **5a** (75% after 10 s; see Chart 1 for ¹H and ¹³C chemical shifts). Isophthalaldehyde and terephthalaldehyde also formed the corresponding π complexes **5b** [53% after 10 s, 75% after 30 min; ¹H/¹³C (ppm): -1.16/-11.54, Me_{α}; -0.73/-0.18, Me_{β}; 5.36/88.49, HC(O)] and **5c** [50% after 10 s; ¹H/¹³C (ppm): -1.01/-10.55, Me_{α}; -0.69/-0.23, Me_{β}; 5.38/ 89.56, HC(O)]. The formyl ¹H peaks were very broad for **5a** $(W_{1/2} = 30$ Hz vs 10 Hz for the free substrate) and **5b** $(W_{1/2} =$ 25 Hz) but not for **5c** $(W_{1/2} = 8$ Hz).

In the case of ortho isomer 5a, ethane was evolved¹¹ very slowly at -100 °C and more rapidly at -80 °C ($t_{1/2} = 12$ min);

its evolution from the para isomer **5c** was rapid at -100 °C ($t_{1/2} = 14$ min). The meta isomer **5b** was stable at -100 °C but disappeared upon warming to -60 °C ($t_{1/2} = 1$ min) as the 1,2-adduct appeared [¹H NMR: cluster of peaks at ca. 1.40 ppm, MeC(OLi); confirmed by GC–MS after hydrolysis].

Acetophenone did not form a complex under our conditions. Nevertheless, upon injection of the *p*-cyano- or *p*-methoxy-carbonyl derivatives at -100 °C, we observed small amounts of the corresponding π complexes **6a** [15%; see Chart 1 for ¹H and ¹³C chemical shifts] and **6b** [2%; ¹H/¹³C (ppm): -0.90/-3.13, Me_{α}; -0.49/8.64, Me_{β}; 93.34, C(O)]. They were stable at -100 °C but disappeared upon warming (**6a**, $t_{1/2} = 7$ min, -40 °C; **6b**, $t_{1/2} = 8$ min, -20 °C; measured for the disappearance of starting materials) as the enolates appeared along with methane.¹¹ The catalytic system, which gives 1,2-addition with acetophenones, appears to involve a phosphine-complexed organocopper(I) intermediate.³

Injection of diacetyl at -100 °C gave 7 (50% after 10 s), which disappeared rapidly ($t_{1/2} = 4 \text{ min}$) with the formation of ethane.¹¹ No Cu⁰ (red mirror or black precipitate) was observed; therefore, the copper remained complexed, presumably as Cu^I.

Ethyl pyruvate afforded 8 (49% after 10 s, 95% after 3 h), which was stable at -100 °C. A NOE cross-peak between the hydrogens of Me_{β} and those of the acyl methyl group was observed. Complex 8 disappeared upon warming ($t_{1/2} = 2 \text{ min}$, -20 °C) as the 1,2-adduct appeared [¹H NMR: singlet at 1.35 ppm, MeC(OLi)].

In contrast to thiobenzophenone, which gave a very stable π complex,¹⁴ benzophenone did not yield a detectable amount of one. On the other hand, fluorenone formed a stable π complex.¹⁵

In the presence of Me₂CuLi, diverse aldehydes and ketones form cuprate–carbonyl π complexes with wide variations in yield and stability. Three subsequent reaction pathways are possible: (i) 1,2-addition, (ii) evolution of ethane, and (iii) enolate formation. These observations confirm theoretical calculations and provide experimental support for mechanistic schemes involving cuprate–carbonyl π complexes.

ASSOCIATED CONTENT

S Supporting Information

Selected NMR plots. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

sbertz1@uncc.edu; cogle@uncc.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF for Grants 1012493 and 0321056.

REFERENCES

(1) For a recent example, see: Vrancken, E.; Gérard, H.; Linder, D.; Ouizem, S.; Alouane, N.; Roubineau, E.; Bentayeb, K.; Marrot, J.; Mangeney, P. J. Am. Chem. Soc. **2011**, 133, 10790–10802.

(2) (a) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. *Chem. Rev.* **2008**, *108*, 2824–2852. (b) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. *Chem. Rev.* **2008**, *108*, 2796–2823. (c) Woodward, S. *Angew. Chem., Int. Ed.* **2005**, *44*, 5560–5562.

(3) Madduri, A. V. R.; Harutyunyan, S. R.; Minnaard, A. J. Angew. Chem., Int. Ed. 2012, 51, 3164–3167.

(4) Lithium-carbonyl σ complexes of cuprates are known. See: Bertz, S. H.; Smith, R. A. J. J. Am. Chem. Soc. **1989**, 111, 8276–8277. (5) Yoshikai, N.; Nakamura, E. Chem. Rev. **2012**, 112, 2339–2372.

(6) For the acyl cyanide *π*-complex model, see: Bertz, S. H.; Hardin,

R. A.; Murphy, M. D.; Ogle, C. A. Chem. Commun. 2013, 49, 3010-3012.

(7) McGarrity, J. F.; Ogle, C. A.; Brich, Z.; Loosli, H.-R. J. Am. Chem. Soc. 1985, 107, 1810–1815.

(8) Gschwind, R. M. Chem. Rev. 2008, 108, 3029-3053.

(9) For an NMR study of the benzaldehyde-MeLi reaction, see: Ye, M.; Logaraj, S.; Jackman, L. M.; Hillegass, K.; Hirsh, K. A.; Bollinger, A. M.; Grosz, A. L.; Mani, V. *Tetrahedron* **1994**, *50*, 6109-6116.

(10) For GC-MS of 1-phenylethanol, see: Uzura, A.; Katsuragi, T.; Tani, Y. J. Biosci. Bioeng. 2001, 91, 217-221.

(11) The injection must be made with the NMR tube uncapped, which results in small baseline amounts of methane (0.19 ppm) and ethane (0.83 ppm) from atmospheric water/oxygen. Methane or ethane reported for a reaction is that in excess of the baseline amount.

(12) Berger, S.; Braun, S. 200 and More NMR Experiments—A Practical Course; Wiley-VCH: Weinheim, Germany, 2004.

(13) (a) Bertz, S. H.; Hardin, R. A.; Murphy, M. D.; Ogle, C. A.; Richter, J. D.; Thomas, A. A. Angew. Chem., Int. Ed. 2012, 51, 2681– 2685. (b) Bertz, S. H.; Cope, S. K.; Hardin, R. A.; Murphy, M. D.; Ogle, C. A.; Smith, D. T.; Thomas, A. A.; Whaley, T. N. Organometallics 2012, 31, 7827–7838. (c) Bertz, S. H.; Browder, K. L.; Hardin, R. A.; Murphy, M. D.; Ogle, C. A.; Thomas, A. A. Organometallics 2012, 31, 7809–7811.

(14) (a) Bertz, S. H.; Moazami, Y.; Murphy, M. D.; Ogle, C. A.; Richter, J. D.; Thomas, A. A. *J. Am. Chem. Soc.* **2010**, *132*, 9549–9551. Also see: (b) Bertz, S. H.; Dabbagh, G.; Williams, L. M. J. Org. Chem. **1985**, *50*, 4414–4415.

(15) Bertz, S. H.; Hardin, R. A.; Heavey, T. J.; Ogle, C. A. Angew. Chem., Int. Ed. 2013, DOI: 10.1002/anie.201303783.